Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We explore the cosmic evolution of the fraction of dust-obscured star formation predicted by thesimbacosmological hydrodynamic simulations featuring an on-the-fly model for dust formation, evolution, and destruction. We find that up toz= 3, our results are broadly consistent with previous observational results of little to no evolution in obscured star formation. However, atz> 3 we find strong evolution at fixed galaxy stellar mass toward greater amounts of obscured star formation, in tension with high-redshift observations. We explain the trend of increasing obscuration at higher redshifts by evolving star-dust geometry, as the dust-to-stellar mass ratios remain relatively constant across cosmic time. We additionally see that at a fixed redshift, more massive galaxies have a higher fraction of their star formation obscured, which is explained by increased dust-to-stellar mass ratios at higher stellar masses. Finally, we estimate the contribution of dust-obscured star formation to the total star formation rate budget and find that the dust-obscured star formation history peaks aroundz∼ 2−3, and becomes subdominant atz≳ 5. The dominance of obscured star formation at redshiftsz≲ 4 is consistent with our results for the evolution of the obscured star formation fraction at fixed stellar mass to higher values at higher redshift because there exist fewer massive, heavily obscured galaxies at high redshift.more » « less
-
ABSTRACT In recent years, cosmological hydrodynamical simulations have proven their utility as key interpretative tools in the study of galaxy formation and evolution. In this work, we present a comparative analysis of the baryon cycle in three publicly available, leading cosmological simulation suites: EAGLE, IllustrisTNG, and SIMBA. While these simulations broadly agree in terms of their predictions for the stellar mass content and star formation rates of galaxies at $$z\approx 0$$, they achieve this result for markedly different reasons. In EAGLE and SIMBA, we demonstrate that at low halo masses ($$M_{\rm 200c}\lesssim 10^{11.5}\, \mathrm{M}_{\odot }$$), stellar feedback (SF)-driven outflows can reach far beyond the scale of the halo, extending up to $$2\!-\!3\times R_{\rm 200c}$$. In contrast, in TNG, SF-driven outflows, while stronger at the scale of the interstellar medium, recycle within the circumgalactic medium (within $$R_{\rm 200c}$$). We find that active galactic nucleus (AGN)-driven outflows in SIMBA are notably potent, reaching several times $$R_{\rm 200c}$$ even at halo masses up to $$M_{\rm 200c}\approx 10^{13.5}\, \mathrm{M}_{\odot }$$. In both TNG and EAGLE, AGN feedback can eject gas beyond $$R_{\rm 200c}$$ at this mass scale, but seldom beyond $$2\!-\!3\times R_{\rm 200c}$$. We find that the scale of feedback-driven outflows can be directly linked with the prevention of cosmological inflow, as well as the total baryon fraction of haloes within $$R_{\rm 200c}$$. This work lays the foundation to develop targeted observational tests that can discriminate between feedback scenarios, and inform subgrid feedback models in the next generation of simulations.more » « less
-
ABSTRACT Detecting dual active galactic nuclei (DAGNs) in observations and understanding theoretically which massive black holes (MBHs) compose them and in which galactic and large-scale environment they reside are becoming increasingly important questions as we enter the multimessenger era of MBH astronomy. This paper presents the abundance and properties of DAGN produced in nine large-scale cosmological hydrodynamical simulations. We focus on DAGN powered by AGN with $$L_{\rm bol}\geqslant 10^{43}\, \rm erg\, s^{-1}$$ and belonging to distinct galaxies, i.e. pairs that can be characterized with current and near-future electromagnetic observations. We find that the number density of DAGN separated by a few to 30 proper kpc varies from $$10^{-8}$$ (or none) to $$10^{-3} \, \rm comoving\, Mpc^{3}$$ in the redshift range $$z=0\!-\!7$$. At a given redshift, the densities of the DAGN numbers vary by up to two orders of magnitude from one simulation to another. However, for all simulations, the DAGN peak is in the range $$z=1\!-\!3$$, right before the peak of cosmic star formation or cosmic AGN activity. The corresponding fractions of DAGN (with respect to the total number of AGN) range from 0 per cent to 6 per cent. We find that simulations could produce too few DAGN at $z=0$ (or merge pairs too quickly) compared to current observational constraints while being consistent with preliminary constraints at high redshift ($$z\sim 3$$). Next-generation observatories (e.g. Advanced X-Ray Imaging Satellite [AXIS]) will be of paramount importance to detect DAGN across cosmic times. We predict the detectability of DAGN with future X-ray telescopes and discuss DAGN as progenitors for future Laser Interferometer Space Antenna (LISA) gravitational wave detections.more » « less
-
The radial distribution of gas within galactic haloes is connected to the star formation rate and the nature of baryon-driven feedback processes. Using six variants of the hydrodynamic simulation Simba, we study the impact of different stellar/AGN feedback prescriptions on the gas density profiles of haloes in the total mass range and redshift interval . We find that the radial profiles are well represented by a power law and that, for a fixed total halo mass, the slope and amplitude of such power law are generally weakly dependent on redshift. Once AGN-driven jets are activated in the simulation, the gas density profile of haloes with declines more gently with radial distance. We argue that this distinctive feature could be exploited with current observations to discriminate amongst the predictions of the different feedback models. We introduce a universal fitting formula for the slope and amplitude of the gas density profile as a function of total halo mass and redshift. The best-fit functions are suitable for all feedback variants considered, and their predictions are in excellent agreement with the numerical results. We provide the values of all fit parameters, making our fitting formula a versatile tool to mimic the effect of Simba feedback models onto N-body simulations and semi-analytical models of galaxy formation. Our results can also aid observational estimates of the gas mass within haloes that assume a specific slope for the underlying gas density profile.more » « less
-
ABSTRACT We quantify the cosmological spread of baryons relative to their initial neighbouring dark matter distribution using thousands of state-of-the-art simulations from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project. We show that dark matter particles spread relative to their initial neighbouring distribution owing to chaotic gravitational dynamics on spatial scales comparable to their host dark matter halo. In contrast, gas in hydrodynamic simulations spreads much further from the initial neighbouring dark matter owing to feedback from supernovae (SNe) and active galactic nuclei (AGN). We show that large-scale baryon spread is very sensitive to model implementation details, with the fiducial simba model spreading ∼40 per cent of baryons >1 Mpc away compared to ∼10 per cent for the IllustrisTNG and astrid models. Increasing the efficiency of AGN-driven outflows greatly increases baryon spread while increasing the strength of SNe-driven winds can decrease spreading due to non-linear coupling of stellar and AGN feedback. We compare total matter power spectra between hydrodynamic and paired N-body simulations and demonstrate that the baryonic spread metric broadly captures the global impact of feedback on matter clustering over variations of cosmological and astrophysical parameters, initial conditions, and (to a lesser extent) galaxy formation models. Using symbolic regression, we find a function that reproduces the suppression of power by feedback as a function of wave number (k) and baryonic spread up to $$k \sim 10\, h$$ Mpc−1 in SIMBA while highlighting the challenge of developing models robust to variations in galaxy formation physics implementation.more » « less
-
Abstract One of the most common methods for inferring galaxy attenuation curves is via spectral energy distribution (SED) modeling, where the dust attenuation properties are modeled simultaneously with other galaxy physical properties. In this paper, we assess the ability of SED modeling to infer these dust attenuation curves from broadband photometry, and suggest a new flexible model that greatly improves the accuracy of attenuation curve derivations. To do this, we fit mock SEDs generated from the simba cosmological simulation with the prospector SED fitting code. We consider the impact of the commonly assumed uniform screen model and introduce a new nonuniform screen model parameterized by the fraction of unobscured stellar light. This nonuniform screen model allows for a nonzero fraction of stellar light to remain unattenuated, resulting in a more flexible attenuation curve shape by decoupling the shape of the UV attenuation curve from the optical attenuation curve. The ability to constrain the dust attenuation curve is significantly improved with the use of a nonuniform screen model, with the median offset in UV attenuation decreasing from −0.30 dex with a uniform screen model to −0.17 dex with the nonuniform screen model. With this increase in dust attenuation modeling accuracy, we also improve the star formation rates (SFRs) inferred with the nonuniform screen model, decreasing the SFR offset on average by 0.12 dex. We discuss the efficacy of this new model, focusing on caveats with modeling star-dust geometries and the constraining power of available SED observations.more » « less
-
Abstract We explore the role of galactic feedback on the low-redshift Lyα(Lyα) forest (z≲ 2) statistics and its potential to alter the thermal state of the intergalactic medium. Using the Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) suite, we explore variations of the AGN and stellar feedback models in the IllustrisTNG and Simba subgrid models. We find that both AGN and stellar feedback in Simba play a role in setting the Lyαforest column density distribution function (CDD) and the Doppler width (b-value) distribution. The Simba AGN jet feedback mode is able to efficiently transport energy out to the diffuse IGM, causing changes in the shape and normalization of the CDD and a broadening of theb-value distribution. We find that stellar feedback plays a prominent role in regulating supermassive black hole growth and feedback, highlighting the importance of constraining stellar and AGN feedback simultaneously. In IllustrisTNG, the AGN feedback variations explored in CAMELS do not affect the Lyαforest, but varying the stellar feedback model does produce subtle changes. Our results imply that the low-zLyαforest can be sensitive to changes in the ultraviolet background, stellar and black hole feedback, and that AGN jet feedback in particular can have a strong effect on the thermal state of the IGM.more » « less
-
Abstract We present observations of CO(3−2) in 13 main-sequence z = 2.0–2.5 star-forming galaxies at log ( M * / M ⊙ ) = 10.2 – 10.6 that span a wide range in metallicity (O/H) based on rest-optical spectroscopy. We find that L CO ( 3 − 2 ) ′ /SFR decreases with decreasing metallicity, implying that the CO luminosity per unit gas mass is lower in low-metallicity galaxies at z ∼ 2. We constrain the CO-to-H 2 conversion factor ( α CO ) and find that α CO inversely correlates with metallicity at z ∼ 2. We derive molecular gas masses ( M mol ) and characterize the relations among M * , SFR, M mol , and metallicity. At z ∼ 2, M mol increases and the molecular gas fraction ( M mol / M * ) decreases with increasing M * , with a significant secondary dependence on SFR. Galaxies at z ∼ 2 lie on a near-linear molecular KS law that is well-described by a constant depletion time of 700 Myr. We find that the scatter about the mean SFR− M * , O/H− M * , and M mol − M * relations is correlated such that, at fixed M * , z ∼ 2 galaxies with larger M mol have higher SFR and lower O/H. We thus confirm the existence of a fundamental metallicity relation at z ∼ 2, where O/H is inversely correlated with both SFR and M mol at fixed M * . These results suggest that the scatter of the z ∼ 2 star-forming main sequence, mass–metallicity relation, and M mol – M * relation are primarily driven by stochastic variations in gas inflow rates. We place constraints on the mass loading of galactic outflows and perform a metal budget analysis, finding that massive z ∼ 2 star-forming galaxies retain only 30% of metals produced, implying that a large mass of metals resides in the circumgalactic medium.more » « less
-
Abstract Active galactic nuclei (AGNs) feedback models are generally calibrated to reproduce galaxy observables such as the stellar mass function and the bimodality in galaxy colors. We use variations of the AGN feedback implementations in the IllustrisTNG (TNG) andSimbacosmological hydrodynamic simulations to show that the low-redshift Lyαforest can provide constraints on the impact of AGN feedback. We show that TNG overpredicts the number density of absorbers at column densitiesNHI< 1014cm−2compared to data from the Cosmic Origins Spectrograph (in agreement with previous work), and we demonstrate explicitly that its kinetic feedback mode, which is primarily responsible for galaxy quenching, has a negligible impact on the column density distribution (CDD) of absorbers. In contrast, we show that the fiducialSimbamodel, which includes AGN jet feedback, is the preferred fit to the observed CDD of thez= 0.1 Lyαforest across 5 orders of magnitude in column density. We show that theSimbaresults with jets produce a quantitatively better fit to the observational data than theSimbaresults without jets, even when the ultraviolet background is left as a free parameter. AGN jets inSimbaare high speed, collimated, weakly interacting with the interstellar medium (via brief hydrodynamic decoupling), and heated to the halo virial temperature. Collectively these properties result in stronger long-range impacts on the intergalactic medium when compared to TNG’s kinetic feedback mode, which drives isotropic winds with lower velocities at the galactic radius. Our results suggest that the low-redshift Lyαforest provides plausible evidence for long-range AGN jet feedback.more » « less
-
ABSTRACT Recent systematic searches for massive black holes (BHs) in local dwarf galaxies led to the discovery of a population of faint active galactic nuclei (AGNs). We investigate the agreement of the BH and AGN populations in the Illustris, TNG, Horizon-AGN, EAGLE, and SIMBA simulations with current observational constraints in low-mass galaxies. We find that some of these simulations produce BHs that are too massive, and that the BH occupation fraction (OF) at z = 0 is not inherited from the simulation seeding modelling. The ability of BHs and their host galaxies to power an AGN depends on BH and galaxy subgrid modelling. The fraction of AGN in low-mass galaxies is not used to calibrate the simulations, and thus can be used to differentiate galaxy formation models. AGN fractions at z = 0 span two orders of magnitude at fixed galaxy stellar mass in simulations, similarly to observational constraints, but uncertainties and degeneracies affect both observations and simulations. The agreement is difficult to interpret due to differences in the masses of simulated and observed BHs, BH OF affected by numerical choices, and an unknown fraction of obscured AGN. Our work advocates for more thorough comparisons with observations to improve the modelling of cosmological simulations, and our understanding of BH and galaxy physics in the low-mass regime. The mass of BHs, their ability to efficiently accrete gas, and the AGN fraction in low-mass galaxies have important implications for the build-up of the entire BH and galaxy populations with time.more » « less
An official website of the United States government

Full Text Available